

# SANYO Semiconductors DATA SHEET



# **FM Transmitter IC with Stereo Modulation**

### **Overview**

The LV2283VB is an FM Transmitter IC. MPX block makes stereo modulated, composite signal from L and R sound inputs. RF VCO includes FM modulation function. PLL synthesizer determines RF output frequency with I<sup>2</sup>C control.

### Application

- Portable Memory Player
- Portable HDD Player
- Wireless Headphone

#### **Features**

- (Audio) Pilot tone system stereo modulation, audio attenuation
- (RF) VCO, programmable gain driver amplifier
- (PLL) 70 to 110MHz 100kHz step
- (Bus control) I<sup>2</sup>C bus control
- (Regulator) 2.8V LDO regulator

# **Specifications**

#### Absolute Maximum Ratings at $Ta = 25^{\circ}C$

| Parameter                   | Symbol              | Conditions                                    | Ratings              | Unit |
|-----------------------------|---------------------|-----------------------------------------------|----------------------|------|
| Maximum supply voltage      | V <sub>CC</sub> max | Pin 6                                         | 7.0                  | V    |
| Maximum input voltage       | V <sub>IN</sub> max |                                               | V <sub>CC</sub> +0.3 | V    |
| Minimum input voltage       | V <sub>IN</sub> min |                                               | -0.3                 | V    |
| Allowable power dissipation | Pd max              | Ta $\leq$ 85°C, Mounted on a specified board* | 500                  | mW   |
| Operating temperature       | Topr                |                                               | -40 to +85           | °C   |
| Storage temperature         | Tstg                |                                               | -55 to +150          | °C   |

\* Specified board : 114.3mm×76.1mm×1.6mm, glass epoxy circuit board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

# LV2283VB

#### **Recommended Operating Conditions** at $Ta = 25^{\circ}C$

| Parameter                      | Symbol             | Conditions | Ratings    | Unit |
|--------------------------------|--------------------|------------|------------|------|
| Recommended supply voltage     | V <sub>CC</sub>    | Pin 6      | 3.3        | V    |
| Operating supply voltage range | V <sub>CC</sub> op | Pin 6      | 2.8 to 5.5 | V    |

## AC Characteristics Ta = 25°C, V<sub>CC</sub> = 3.3V, I<sup>2</sup>C bits = Default state, L and R input = 1kHz, 450mVrms,

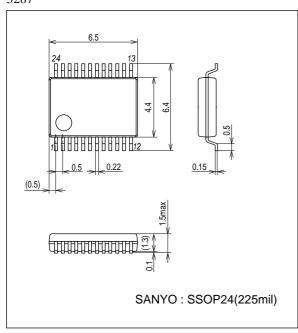
unless otherwise noted

| Decemeter              | Symbol            | Conditions                                         |     | Ratings |     | Unit |
|------------------------|-------------------|----------------------------------------------------|-----|---------|-----|------|
| Parameter              | Symbol Conditions |                                                    | min | typ     | max | Unit |
| Circuit current        | ICC               | No input signal, Pin 6 current                     |     | 8       | 10  | mA   |
| Standby current ISTB N |                   | No input signal, I <sup>2</sup> C bit "STB" = "1", |     |         | 1.0 | μA   |
|                        |                   | Pin 6 current                                      |     |         |     |      |

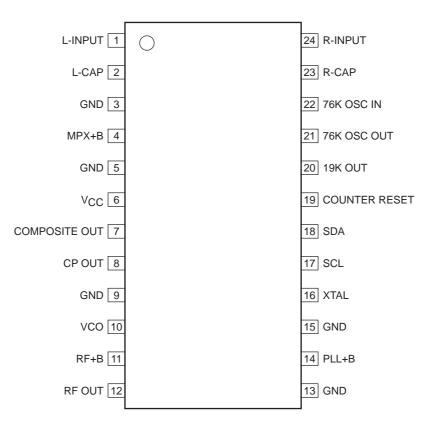
### Audio and MPX Blocks

| Deservator                        | Querrahaal | Quaditions                                                    |     | Unit |     |       |
|-----------------------------------|------------|---------------------------------------------------------------|-----|------|-----|-------|
| Parameter                         | Symbol     | Conditions                                                    | min | typ  | max | Unit  |
| Maximum audio input               | VA max     | Pin 1 and 24 input                                            |     |      | 900 | mVrms |
| Audio input frequency             | FAF        | Pin 1 and 24 input                                            | 20  |      | 15k | Hz    |
| Channel separation                | SEP        | Pin 7, composite output, L $\rightarrow$ R, R $\rightarrow$ L | 20  | 35   |     | dB    |
| Channel balance                   | СВ         | Pin 7, composite output                                       | -2  | 0    | 2   | dB    |
| Total harmonic distortion         | THD        | Pin 7, composite output                                       |     | 0.1  | 0.3 | %     |
| Pilot tone output level           | PMOD       | I <sup>2</sup> C bits "ST" ="1"                               | 0.5 | 0.85 | 1.2 | mVp-p |
| Composite output level            | MPXOUT     |                                                               | 3.3 | 3.8  | 4.3 | mVrms |
| Audio mute                        | MUTE       | I <sup>2</sup> C bit "MUTE" = "1"                             | 30  | 35   |     | dB    |
| Audio attenuation adjustment step | ATTSTEP    | I <sup>2</sup> C bit "ATT2 – ATT0" = "000" to "111",          | 1.5 | 2    | 2.5 | dB    |
| Crystal oscillator frequency (1)  | FXOSC (1)  | totally 8 steps.<br>Pin 21 and Pin 22                         |     | 76   |     | kHz   |

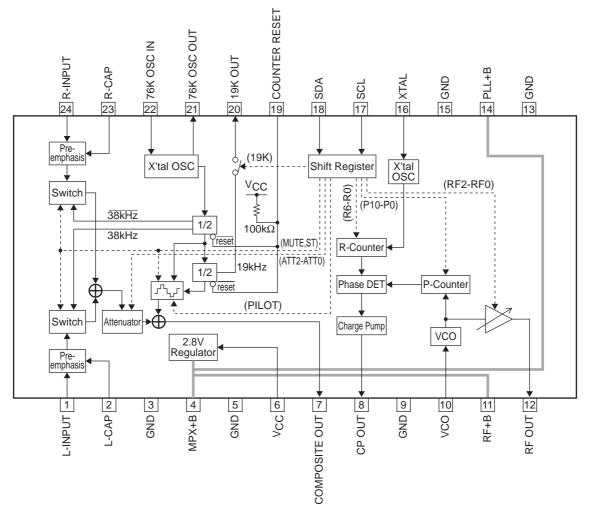
### **RF Blocks**


| Deremeter                 | Cumbal            | Conditions                                           |     | Ratings |     |      |  |
|---------------------------|-------------------|------------------------------------------------------|-----|---------|-----|------|--|
| Parameter                 | Symbol Conditions |                                                      | min | typ     | max | Unit |  |
| RF output                 | RFOUT             | f = 98MHz, I <sup>2</sup> C bit "RF2 - RF0" = "011", | 109 | 112     | 115 | dBμV |  |
|                           |                   | Pin 12 output                                        |     |         |     |      |  |
| RF output adjustment step | RFSTEP            | $I^{2}C$ bit "RF2 - RF0" = "000" to "111",           | 0.4 | 0.9     | 1.4 | dB   |  |
|                           |                   | totally 8 steps. Pin 12 relative output.             |     |         |     |      |  |
| RF frequency              | FRF               | 100kHz step                                          | 70  |         | 110 | MHz  |  |

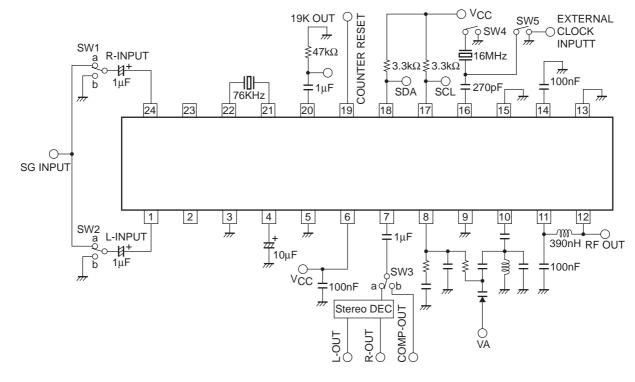
#### PLL Blocks


| Deremeter                             | Sympol    | Conditions                                                                                                                                     |                    | Ratings            |                      |      |  |
|---------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|----------------------|------|--|
| Parameter                             | Symbol    | Conditions                                                                                                                                     | min                | typ                | max                  | Unit |  |
| I <sup>2</sup> C input "High" voltage | VH        |                                                                                                                                                | 0.8V <sub>CC</sub> |                    | V <sub>CC</sub> +0.3 | V    |  |
| I <sup>2</sup> C input "Low" voltage  | VL        |                                                                                                                                                | -0.3               |                    | 0.2V <sub>CC</sub>   | V    |  |
| 19kHz output voltage                  | V19K      | Pin 20. 19kHz output. I <sup>2</sup> C bit "19K" = "1".<br>Load impedance = $47k\Omega$ .                                                      | 0.6V <sub>CC</sub> | 0.8V <sub>CC</sub> |                      | Vp-р |  |
| RF input frequency                    | FPLL      | Step = 100kHz, See table 1                                                                                                                     | 70                 |                    | 110                  | MHz  |  |
| Crystal oscillator frequency (2)      | FXOSC (2) | Pin 16                                                                                                                                         |                    | 16                 |                      | MHz  |  |
| External clock frequency              | FEXT      | External clock injection to Pin 13<br>instead of 16MHz crystal oscillation.<br>When the LSI is standby mode, external<br>clock should be stop. | 1                  |                    | 24                   | MHz  |  |
| CP output current                     | ICP       | CP voltage = 1.4V                                                                                                                              |                    | 30                 |                      | μΑ   |  |

# Package Dimensions


unit : mm (typ) 3287




# **Pin Assignment**



# **Block Diagram**



# **AC Testing Circuit**



| Pin De  | escription       |                   |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No. | Pin Name         | DC Voltage<br>(V) | Description                                                                                                                                                                           | Equivalent Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1       | L-INPUT          | 0                 | Left channel input. If audio source DC<br>voltage is not 0V, AC coupling<br>capacitance is required. Pre-emphasis<br>capacitance should be required between<br>pin 1 (24) and 2 (23). | $\begin{array}{c} 6\\ \hline \\ 4\\ \hline \\ 1\\ \hline \\ (24)\\ \hline \\ (23)\\ \hline \\ 5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2       | L-CAP            | 0                 | See Pin 1                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3       | GND              | 0                 |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4       | MPX+B            | 2.8               | LDO regulator output for audio frequency<br>and MPX blocks. External decoupling<br>capacitance is required.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5       | GND              | 0                 |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6       | V <sub>CC</sub>  | 3.3               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7       | COMPOSITE<br>OUT | 0.05              | Stereo modulated output.                                                                                                                                                              | $ \begin{array}{c} 6\\ 4\\ 12k\Omega \\ \hline 7\\ 2k\Omega \\ \hline 5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8       | CP OUT           | -                 | Charge pump current output.                                                                                                                                                           | 6<br>(1)<br>(30μA<br>(30μA<br>(30μA<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA)<br>(30μA) |
|         |                  |                   |                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Continued on next page.

| Continued | I from preceding pag |                   | 1                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No.   | Pin Name             | DC Voltage<br>(V) | Description                                                                                                                                       | Equivalent Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10        | VCO                  | 2.2               | Transistor BASE terminal for Colpitz oscillator.                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11        | RF+B                 | 2.8               | LDO regulator output for RF blocks.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12        | RF OUT               | 2.8               | Collector output. Inductance should be<br>connected Between pin 11 and pin 12 for<br>getting resonant frequency and making<br>pin12 DC bias 2.8V. | $ \begin{array}{c} 6\\ 11\\ \hline 12\\ \hline 13\\ \hline 13\\ \hline \\ 6\\ \hline 450\Omega\\ \hline \\ \\ 7\\ \hline \hline \hline \\ 7\\ \hline \hline \hline \\ 7\\ \hline \hline \hline \hline$ |
| 13        | GND                  | 0                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14        | PLL+B                | 2.8               | LDO regulator output for digital blocks.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15        | GND                  | 0                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10        | UND                  | U                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Continued on next page.

# LV2283VB

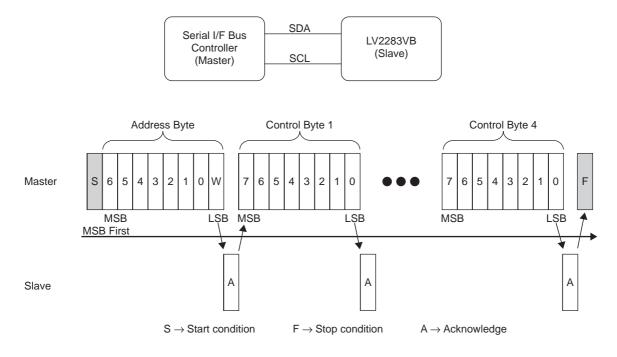
| Continued | l from preceding pag | ge.               |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No.   | Pin Name             | DC Voltage<br>(V) | Description                                                                                                                                                                                                                                  | Equivalent Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16        | XTAL                 | 2.0               | 16MHz crystal is needed for PLL<br>reference frequency. If external clock is<br>injected to Pin 16, frequency should be<br>from 1MHz to 24MHz and N (integer) ×<br>200kHz.<br>When the IC is Standby mode, external<br>clock should be stop. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17        | SCL                  | -                 | I <sup>2</sup> C clock input.                                                                                                                                                                                                                | $\begin{array}{c} 6 \\ \hline \\ 17 \\ \hline \\ 17 \\ \hline \\ 15 \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18        | SDA                  | -                 | I <sup>2</sup> C data input.                                                                                                                                                                                                                 | $\begin{array}{c} 6 \\ \hline \\ 18 \\ \hline \\ 15 \end{array} \longrightarrow CMOS \ Logic \ Input \\ \hline \\ 15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 19        | COUNTER<br>RESET     | 3.3               | Usually pin 19 should be kept "Logic High"<br>or opened (pull up 100kΩ makes pin 19<br>"Logic High" automatically).<br>When pin 19 is "Logic Low" level, internal<br>frequency counter from 76kHz to 19kHz is<br>reset.                      | $ \begin{array}{c} 6 \\ 18 \\ 19 \\ 18 \\ CMOS Logic Input \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 100 k\Omega \\ CMOS Logic Input \\ 15 \\ 15 \\ 100 k\Omega \\ 100 k\Omega$ |
| 20        | 19K OUT              | -                 | 19kHz output (same phase as pilot tone).<br>When I2C bit "19K"=0, Pin 20 is kept<br>"Logic Low" level.                                                                                                                                       | 6<br>20<br>CMOS Logic Output<br>(15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21        | 76K OSC<br>OUT       | 2.0               | For stereo modulator pilot signal and sub<br>carrier. 76kHz crystal should be<br>connected between Pin 21 and Pin 22                                                                                                                         | 6<br>14<br>21<br>$1k\Omega$<br>$1k\Omega$<br>$1k\Omega$<br>$1M\Omega$<br>$1M\Omega$<br>1<br>22<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

No.A0974-7/10

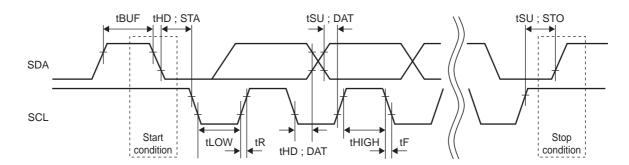
| Continued | Continued from preceding page. |                   |             |                    |  |  |  |  |  |  |
|-----------|--------------------------------|-------------------|-------------|--------------------|--|--|--|--|--|--|
| Pin No.   | Pin Name                       | DC Voltage<br>(V) | Description | Equivalent Circuit |  |  |  |  |  |  |
| 22        | 76K OSC IN                     | 0.7               | See Pin 21  | See Pin 21         |  |  |  |  |  |  |
| 23        | R-CAP                          | 0                 | See Pin 1   | See Pin 21         |  |  |  |  |  |  |
| 24        | R-INPUT                        | 0                 | See Pin 1   | See Pin 21         |  |  |  |  |  |  |

# I<sup>2</sup>C Bus Definition

#### Table 1. I<sup>2</sup>C Bus Write Data Format


| News           | Dute | Bit     |             |     |     |     |       |      | 101/ |     |
|----------------|------|---------|-------------|-----|-----|-----|-------|------|------|-----|
| Name           | Byte | MSB (1) | MSB (1) LSB |     |     |     |       |      |      | ACK |
| Address Byte   | 1    | AD7     | AD6         | AD5 | AD4 | AD3 | AD2   | AD1  | R/W  |     |
|                |      | 1       | 1           | 0   | 1   | 0   | 0     | 0    | 0    | A   |
| Control Byte 1 | 2    | P10     | P9          | P8  | P7  | P6  | P5    | P4   | P3   |     |
|                |      | 0       | 1           | 1   | 1   | 1   | 0     | 1    | 0    | A   |
| Control Byte 2 | 3    | P2      | P1          | P0  | 19K | ST  | PILOT | STB  | MUTE |     |
|                |      | 1       | 0           | 0   | 0   | 1   | 1     | 0    | 0    | A   |
| Control Byte 3 | 4    | RES1    | RES0        | RF2 | RF1 | RF0 | ATT2  | ATT1 | ATT0 |     |
|                |      | 0       | 0           | 1   | 1   | 1   | 0     | 1    | 1    | A   |
| Control Byte 4 | 5    | R6      | R5          | R4  | R3  | R2  | R1    | R0   | TEST |     |
|                |      | 1       | 0           | 1   | 0   | 0   | 0     | 0    | 0    | A   |

(1) : MSB is transmitted first.


#### Table 2. I<sup>2</sup>C Write Mode Description

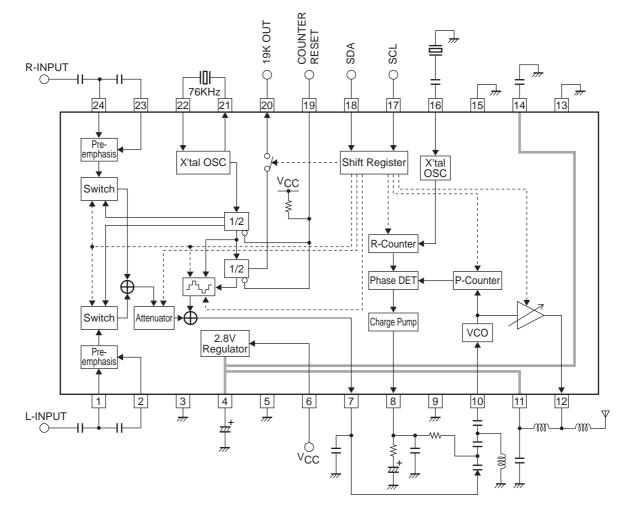
| Bit         | Name                 | Description                                                                                                |
|-------------|----------------------|------------------------------------------------------------------------------------------------------------|
| AD7 – AD1   | Address bit          | LV2283VB requires address bits.                                                                            |
| R/W         | Read/Write           | "0" for Write mode (Write mode only).                                                                      |
| A           | Acknowledge          |                                                                                                            |
| P10 – P0    | Programmable counter | 11 bit Programmable counter. P0 = LSB, P10 = MSB.                                                          |
|             |                      | RF Frequency = (P10x2 <sup>10</sup> + P9x2 <sup>9</sup> + P1x2 <sup>1</sup> + P0) x 100kHz                 |
|             |                      | Default state = "01111010100" (980)                                                                        |
| 19K         | 19kHz output         | 19K OUT (Pin 20) ON / OFF. "19K" = "0" for no output. "1" for 19kHz output (same phase as pilot tone).     |
|             |                      | Default state = "0"                                                                                        |
| ST          | MONO/ST selection    | Monaural/Stereo transmission mode selection. "ST" is set "0" for monaural mode (no pilot tone), "1" for    |
|             |                      | stereo transmission. Default state = "1"                                                                   |
| PILOT       | Pilot tone output    | "1" for normal operation (default). "0" for NO pilot tone in composite output even if ST bit = "1" (Stereo |
|             |                      | mode).                                                                                                     |
| STB         | Standby              | "1" for standby mode. Default state = "0" for normal operation.                                            |
| MUTE        | Audio mute           | "1" for Audio mute. Default state = "0" for normal operation.                                              |
| RES1, RES0  | Reserved bits        | Reserved bits. Default state = "00" for normal operation.                                                  |
| RF2 – RF0   | RF output adjustment | RF output voltage adjustment with 8 degree, 1dB steps. "RF2, RF1, RF0" = "111" for maximum. "000" is       |
|             |                      | minimum RF output. Default state = "111"                                                                   |
| ATT2 – ATT0 | Audio attenuator     | Audio attenuator for FM modulation fine adjustment is set by "ATT2, ATT1, ATT0" with 8 degree,             |
|             |                      | 2dB steps. "111" is for 0dB attenuation. "000" is for 14dB attenuation. Default state = "011".             |
| R6 – R0     | Reference counter    | 7 bit Programmable counter. R0 = LSB, R6 = MSB.                                                            |
|             |                      | Reference frequency should be set 100kHz.                                                                  |
|             |                      | {Crystal oscillator frequency (Pin 16)} / {(R6 $x2^{6}$ + R5 $x2^{5}$ + R1 $x2^{1}$ + R0) x 2} = 100kHz.   |
|             |                      | Default state = "1010000" (80 × 2).                                                                        |
| TEST        | Test mode            | For IC testing. Set "0" for normal operation.                                                              |
|             |                      | "1" for counter testing mode. Default state = "0"                                                          |

# I<sup>2</sup>C Bus Operation



**Time chart** 




#### Table 3. Timing specification

| Parameter                                        | Symbol    | Ratings |     |      | Unit |
|--------------------------------------------------|-----------|---------|-----|------|------|
|                                                  |           | min     | typ | max  | Unit |
| SCL clock frequency                              | fSCL      |         |     | 100  | kHz  |
| Bus free time between a STOP and START condition | tBUF      | 4.7     |     |      | μs   |
| Hold time START condition                        | tHD ; STA | 4.0     |     |      | μs   |
| LOW period of the SCL clock                      | tLOW      | 4.7     |     |      | μs   |
| HIGH period of the SCL clock                     | tHIGH     | 4.0     |     |      | μs   |
| Data hold time                                   | tHD ; DAT | 0.0     |     |      | μs   |
| Data set-up time                                 | tSU ; DAT | 250     |     |      | ns   |
| Rise time of both SDA and SCL signals            | tR        |         |     | 1000 | ns   |
| Fall time of both SDA and SCL signals            | tF        |         |     | 300  | ns   |
| Set-up time for STOP condition                   | tSU ; STO | 4.0     |     |      | μS   |

I<sup>2</sup>C Bus AC Characteristics : Temp=25°C V<sub>CC</sub> = 3.3V

Note : I<sup>2</sup>C Bus is a registered trademark of the Philips Co..

# **Application Circuit**



- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2007. Specifications and information herein are subject to change without notice.